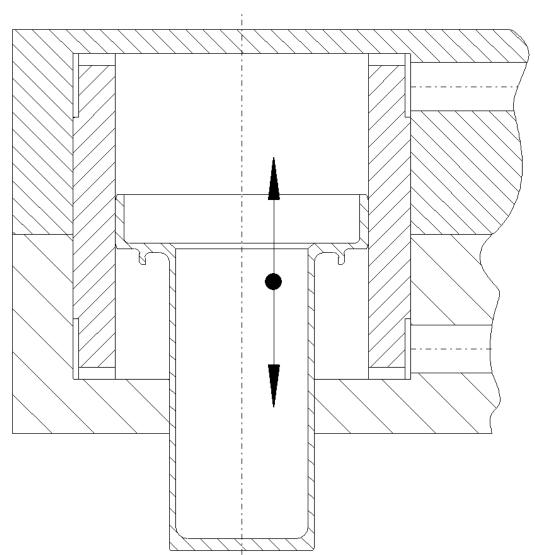
23-october-2012

Mechanical optimization of the injection system in a compression molding machine.

Andrea Minardi

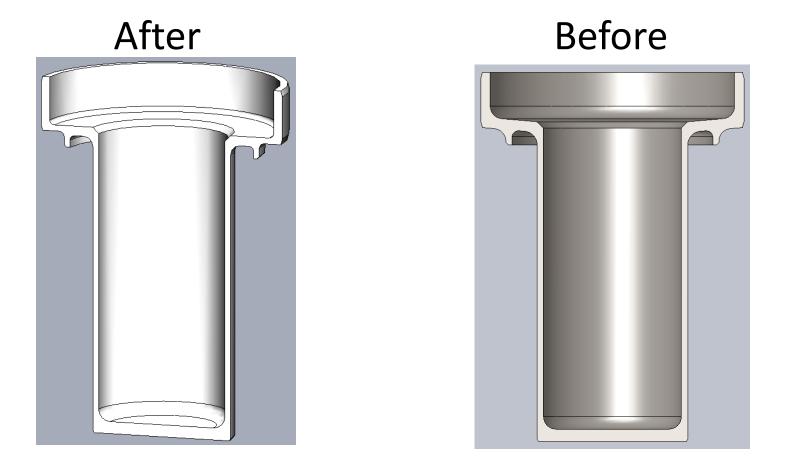
What our machine do...



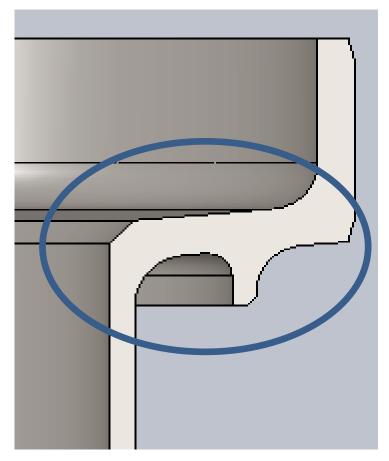
What our machine do...

My case of study:

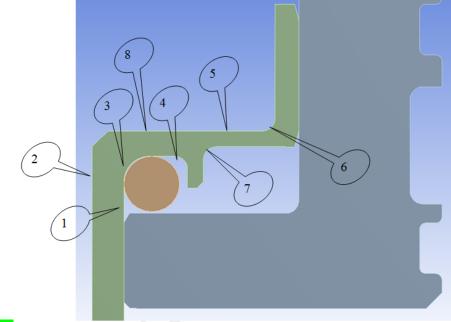
Optimization of the pneumatic piston in the injection system.


Three years ago...

Sometimes we had feedback from the customers about pneumatic piston broken.



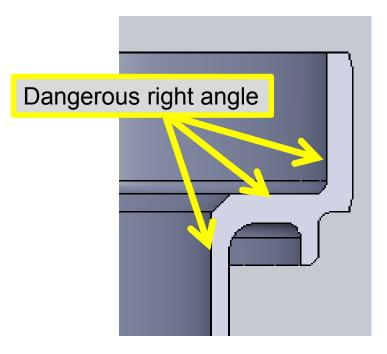
...my job was to find a geometry able to work in this condition without broken. My instrument was Solidworks & Ansys.


My "manual" optimization consist to model my piston with a tapered geometry in the broken regions. the piston.

! Other target of my optimization is to not increase the weight of the piston, to avoid the possibility to damage the surrounding parts.

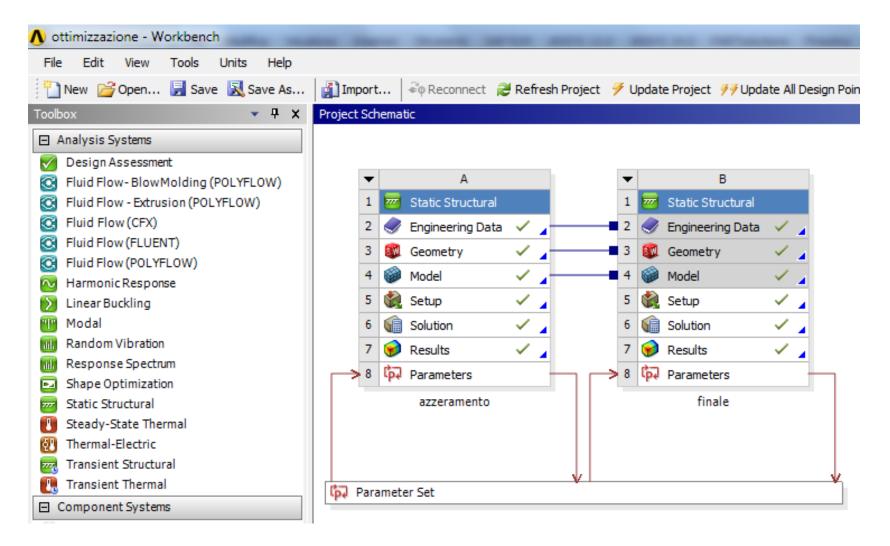
...the results...

...increment of the safety factor from 0.9 to 1.2 about <u>+33%</u>

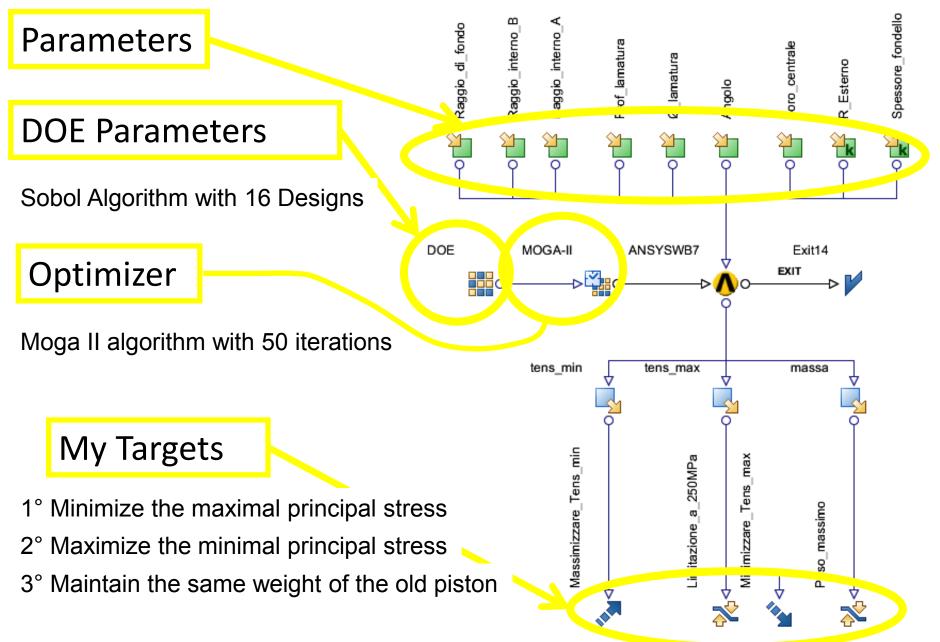

	Calcolo del Coefficiente di Sicurezza per cicli a fatica			$\sigma_{rottura}$ $\sigma_{snervamento}$ $\sigma_{limite della fatica}$		/ mm ² / mm ² / mm ²	
Ø12mm old			12mm new				
region	σ_{massima}	σ_{minima}	C. S.	σ_{massima}	σ_{minima}		C. S.
1	134 N/mm ²	-624 N/mm ²	1,0	158 N/mm ²	-249 N	/mm ²	2,2
2	680 N/mm ²	-243 N/m n ²	<u>0.9</u>	27 N/mm ²	-156 N	$/mm^2$	2 (
3	234 N/mm ²	-680 N/mm	0,0	\sim 44 N/mm ²	-452 N	l/ nm ²	<u>1,2</u>
4	206 N/mm ²	-138 N/mm ²	2,6	108 N/mm ²	-73 N	/mm	7,9
5	226 N/mm ²	-623 N/mm ²	0,9	98 N/mm ²	-163 N	/mm ²	3,3
6	245 N/mm ²	-654 N/mm²	0,9	149 N/mm ²	-275 N	/mm ²	2,0
7	227 N/mm ²	-328 N/mm ²	1,6	99 N/mm ²	-97 N	/mm ²	4,9
8	352 N/mm ²	-107 N/mm²	1,7	108 N/mm ²	-75 N	/mm ²	4,9

...now...

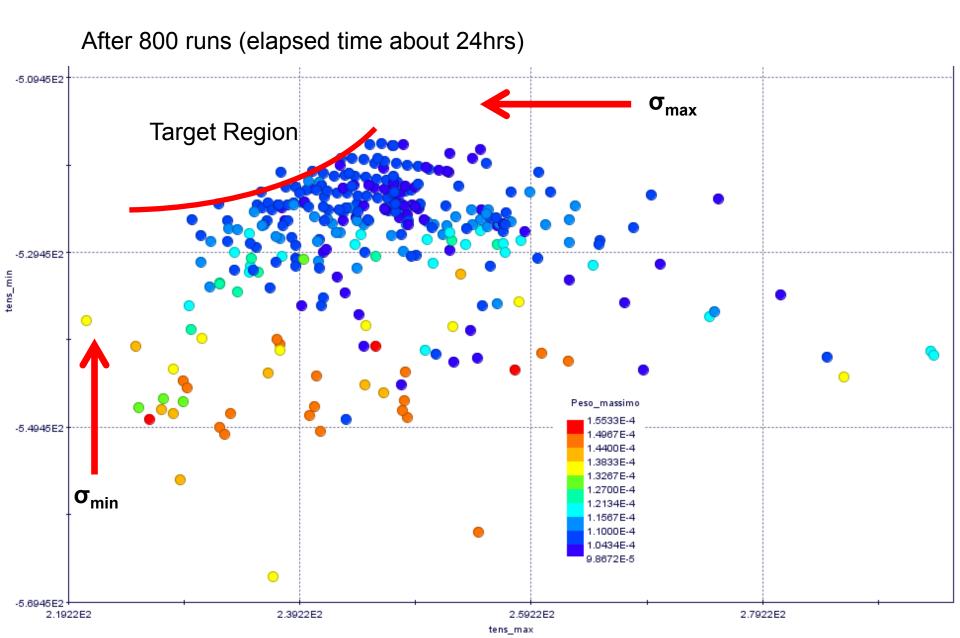
...diameter 16mm piston need to be optimized...

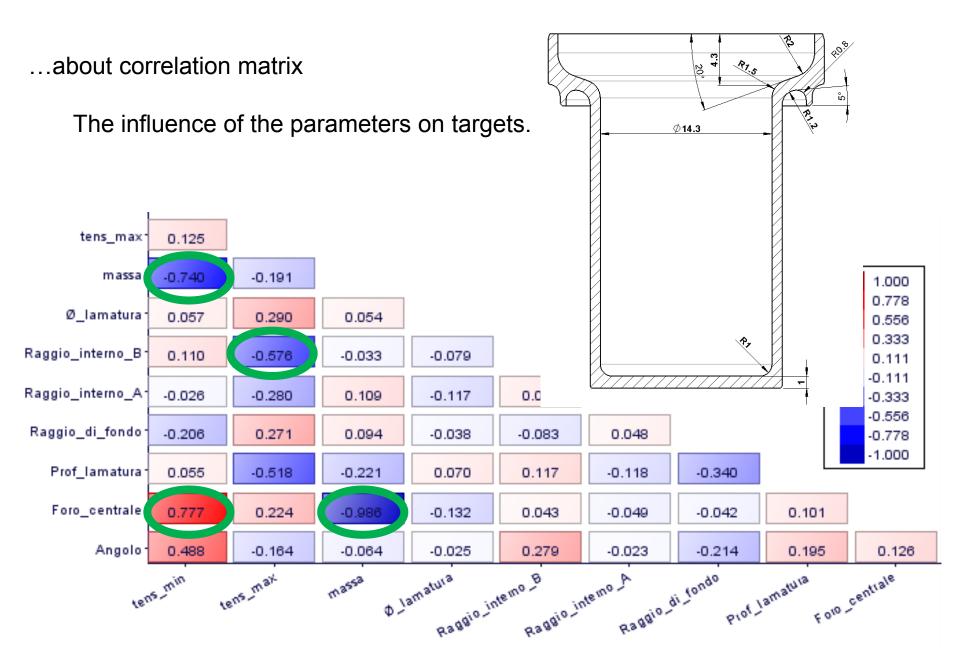


The old 16mm piston was been designed like the old 12mm piston...

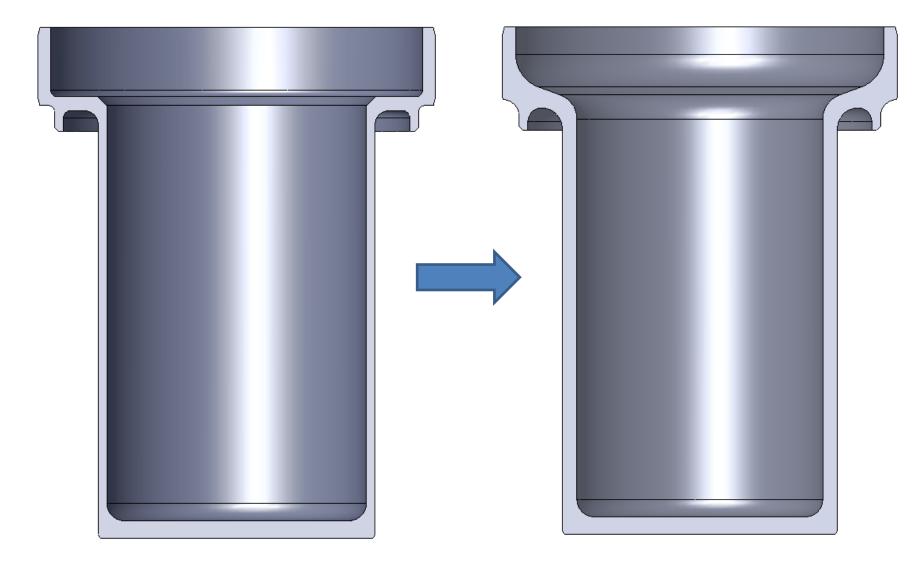


...but now I've one more software available... ස ModeFRONTIER. ¢0. 4.3 R1.5 12 ပိ Ø**14.3** Parameter of my simulatio


The setting of my simulation in ANSYS



The structure of my optimization:



...the results...

Geometry comparison

For manufacturing necessity some performing solution has been discarded

...the improvement in "number"...

increment of the safety factor from 0.9 to 1.3 about <u>+44%</u>

Calcolo del Coefficiente di Sicurezza per cicli a fatica			$\sigma_{ m rottura}$ $\sigma_{ m snervamento}$ $\sigma_{ m limite della fatica}$		910	N/mm ² N/mm ² N/mm ²		<u>6</u> 5	
Ø16mm old				16mm new					
region	σ _{massima}	σ_{minima}	C. S.	$\sigma_{ m massima}$	σ_{minima}		c. s.	7	/
1	0 N/mm ²	-713 N/m n²	<u>0,9</u>	0 N/mm ²	-355	N/mm ²	1,9		
2	196 N/mm ²	0 N/mm²	3,4	·? N/mm²	0	N/mm ²	16,0		
3	175 N/mm ²	0 N/mm ²	3,8	256 N/mm ²	0	N/mm ²	2,6		
4	456 N/mm ²	-130 N/mm ²	1,3	256 N/mn ²	0	N/mm ²	2,6		
5	0 N/mm ²	-131 N/mm ²	5,1	50 N/mm ²	-288	N/mm ²	2,2		
6	81 N/mm ²	0 N/mm ²	8,3	130 N/mm ²	0	N/mm ²	5,2		
7	0 N/mm ²	-95 N/mm²	7,1	0 N/mm ²	-149	1 Vmm ²	4,5		
8	0 N/mm ²	-594 N/mm ²	1,1	0 N/mm ²	-420	N/m²	1.6		
9	0 N/mm ²	-712 N/mm ²	0,9	0 N/mm ²	-526	N/mi 🗧	<u>1,3</u>	$\mathbf{>}$	
10	206 N/mm ²	0 N/mm²	3,3	118 N/mm ²	0	N/mm ²	5,7		
11	528 N/mm ²	0 N/mm²	1,3	83 N/mm ²	0	N/mm ²	8,1		

3

4

To take a summary and comparison

	"Manual Optimization"	Mode Frontier
Number of running	About 30	800
Improvement obtained	+30%	+44%
Total time employed	20 days	3 days + 1 day of calculation

Thanks for the attention

Andrea Minardi

A particularly thanks to all my co-workers, especially Loreti S. and Morsiani R. for all their support during this optimization

23-october-2012

Mechanical optimization of the injection system in a compression molding machine.

Andrea Minardi